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The Aharonov-Bohm Effect:

Topology
The Vector Potential
and
Gauge Transformations



The Aharonov-Bohm Effect

An electron moving in a region
where E and B are zero, but A is
not exhibits physical effects.

Therefore A is real whereas
E and B are not.
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The Vector Potential

EM Field Carries Momentum

Vector potential A => Photons



Gauge Transformations

¢ determines E

and
A determines B

But () and A are not unique

Gauge Transformations produce the different
choices of (]) and A that give the same E and B



Lots of Gauges

Coulomb Gauge
Lorenz Gauge
Axial Gauge
Temporal Gauge
Velocity Gauge
Kirchhoff Gauge
Landau Gauge
Feynman Gauge
t’ Hooft Gauge
Unitary Gauge



Feynman’s Paradox

A paradox is a situation which gives one answer
when analyzed one way, and a different answer
when analyzed another way, so that we are left
in somewhat of a quandary as to actually what
would happen. Of course, in physics there are
never any real paradoxes because there is one
correct answer; at least we believe that nature
will act in only one way (and that is the right
way, naturally). So a paradox in physics is only
a confusion in our understanding.



CHARGED
METAL SPHERES COIL OF WIRE

Fig. 17-5. Will the disc rotate if the
current | is stopped?
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Fig. 17-6. A coil of wire rotating in a
vniform magnetic field—the basic idea
of the ac generator.

act in only one way (and that is the right way, naturally). So in physics a paradox
is only a confusion in our own understanding. Here is our paradox.

Imagine that we construct a device like that shown in Fig. 17-5. There is a
thin, circular plastic disc supported on a concentric shaft with excellent bearings,
so that it is quite free to rotate. On the disc is a coil of wire in the form of a short
solenoid concentric with the axis of rotation. This solenoid carries a steady current
I provided by a small battery, also mounted on the disc. Near the edge of the disc
and spaced uniformly around its circumference are a number of small metal spheres
insulated from each other and from the solenoid by the plastic material of the disc.
Each of these small conducting spheres is charged with the same electrostatic
charge Q. Everything is quite stationary, and the disc is at rest. Suppose now that
by some accident—or by prearrangement—the current in the solenoid is inter-
rupted, without, however, any intervention from the outside. So long as the current
continued, there was a magnetic flux through the solenoid more or less parallel
to the axis of the disc. When the current is interrupted, this flux must go to zero.
There will, therefore, be an electric field induced which will circulate around in
circles centered at the axis. The charged spheres on the perimeter of the disc will
all experience an electric field tangential to the perimeter of the disc. This electric
force is in the same sense for all the charges and so will result in a net torque on the
disc. From these arguments we would expect that as the current in the solenoid
disappears, the disc would begin to rotate. If we knew the moment of inertia of
the disc, the current in the solenoid, and the charges on the small spheres, we could
compute the resulting angular velocity.

But we could also make a different argument. Using the principle of the con-
servation of angular momentum, we could say that the angular momentum of the
disc with all its equipment is initially zero, and so the angular momentum of the
assembly should remain zero. There should be no rotation when the current is
stopped. Which argument is correct? Will the disc rotate or will it not? We will
leave this question for you to think about.

We should warn you that the correct answer does not depend on any non-
essential feature, such as the asymmetric position of a battery, for example. In
fact, you can imagine an ideal situation such as the following: The solenoid is
made of superconducting wire through which there is a current. After the disc has
been carefully placed at rest, the temperature of the solenoid is allowed to rise slowly.
When the temperature of the wire reaches the transition temperature between
superconductivity and normal conductivity, the current in the solenoid will be
brought to zero by the resistance of the wire. The flux will, as before, fall to zero,
and there will be an electric field around the axis. We should also warn you that the
solution is not easy, nor is it a trick. When you figure it out, you will have dis-
covered an important principle of electromagnetism.

17-5 Alternating-current generator

In the remainder of this chapter we apply the principles of Section 17-1 to
analyze a number of the phenomena discussed in Chapter 16. We first look in more
detail at the alternating-current generator. Such a generator consists basically of a
coil of wire rotating in a uniform magnetic field. The same result can also be
achieved by a fixed coil in a magnetic field whose direction rotates in the manner
described in the last chapter. We will consider only the former case. Suppose we
have a circular coil of wire which can be turned on an axis along one of its diam-
eters. Let this coil be located in a uniform magnetic field perpendicular to the axis
of rotation, as in Fig. 17-6. We also imagine that the two ends of the coil are
brought to external connections through some kind of sliding contacts.

Due to the rotation of the coil, the magnetic flux through it will be changing.
The circuit of the coil will therefore have an emf in it. Let S be the area of the coil
and 6 the angle between the magnetic field and the normal to the plane of the coil.*

* Now that we are using the letter A for the vector potential, we prefer to let S stand
for a Surface area.

17-6



Generalized Momentum T

Particle Momentum p
Field Momentum (e/c)A

w=p-(elc) A
KE = 712 / 2m
2 = p2 -2 (e/c) p"A + (e/c)2 A2
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Gauge transformations

Electric and magnetic fields can be written in terms of scalar and vector p

oA
E = -Vp-,

B V x A.

However, this prescription is not unique. There are many different potenti
problem before. It is called gauge invariance. The most general transforn
and (386) is

dv
¢ — ¢+ E:
A — A — V.

This is clearly a generalization of the gauge transformation which we fou
¢ — ¢+c

A — A — Vi,

where c is a constant. In fact, if ¥(r,%) — v¥(r) + ct then Eqgs. (387) a

We are free to choose the gauge so as to make our equations as simple as
potential is to make it go to zero at infinity:

¢(r) =0 as |
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Figure3.l:Left:vimal iaki onof a set of phase space poits contributingo thedisrete
tin e configuration integral (3.5). R ight: n the continuum lim it, the set of pointsbecom es
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